If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8f-16f^2=0
a = -16; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·(-16)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*-16}=\frac{0}{-32} =0 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*-16}=\frac{16}{-32} =-1/2 $
| 2(3x+5)-7=3(5x-2) | | -8/3f(7-5f)=0 | | 15x(x+2)=6x(2x+7) | | 9-2y=4²-19 | | 5m+4=20-3m | | 3x4+12=60 | | 3-(2x-4)=3 | | 3-(2x-4)=4 | | -2x+47=2x+11 | | 5x+20=2x-5 | | 5p÷2=15 | | 5x²=80 | | (5p÷2)=15 | | 3m+2m=6+4m | | d-2=16 | | 40-6x+12=3^3-(x+5) | | -(4x+3)+2(6x-4)=3x-6^2 | | 2.2=x÷57 | | b/12=-1/6 | | 6(r+2)=3(2r-3) | | 2q+7=13-q | | -4x-17=-21 | | 2x-11=(-33) | | 7x-7=2x-22 | | 2(w-3)+5=3(w-3) | | 3x-2=10-3 | | 2w+-1=3w-3 | | 2(v-5)-4v=-22 | | j+177/24=12 | | 7h-27=36h= | | 644/n=23 | | x+(1/5)=2x/3 |